复杂的理想与现实滤波器
在对滤波器进行初步了解后,我们对复杂的理想与现实滤波器进初步的认识。
一个理想的低通滤波器能够完全剔除高于截止频率的所有频率信号并且低于截止频率的信号可以不受影响地通过。实际上的转换区域也不再存在。一个理想的低通滤波器可以用数学的方法(理论上)在频域中用信号乘以矩形函数得到,作为具有同样效果的方法,也可以在时域与sinc函数作卷积得到。
然而,这样一个滤波器对于实际真正的信号来说是不可实现的,这是因为sinc函数是一个延伸到无穷远处的函数(extends to infinity),所以这样的滤波器为了执行卷积就需要预测未来并且需要有过去所有的数据。对于预先录制好的数字信号(在信号的后边补零,并使得由此产生的滤波后的误差小于量化误差)或者无限循环周期信号来说这是可实现的。
实时应用中的实际滤波器通过将信号延时一小段时间让它们能够“看到”未来的一小部分来近似地实现理想滤波器,这已为相移所证明。近似精度越高所需要的延时越长。
采样定理(Nyquist-Shannon sampling theorem)描述了如何使用一个完善的低通滤波器和奈奎斯特-香农插值公式从数字信号采样重建连续信号。实际的数模转换器都是使用近似滤波器。
文章由:UU型滤波器 工字电感http://www.zslcdz.com整理提供
一个理想的低通滤波器能够完全剔除高于截止频率的所有频率信号并且低于截止频率的信号可以不受影响地通过。实际上的转换区域也不再存在。一个理想的低通滤波器可以用数学的方法(理论上)在频域中用信号乘以矩形函数得到,作为具有同样效果的方法,也可以在时域与sinc函数作卷积得到。
然而,这样一个滤波器对于实际真正的信号来说是不可实现的,这是因为sinc函数是一个延伸到无穷远处的函数(extends to infinity),所以这样的滤波器为了执行卷积就需要预测未来并且需要有过去所有的数据。对于预先录制好的数字信号(在信号的后边补零,并使得由此产生的滤波后的误差小于量化误差)或者无限循环周期信号来说这是可实现的。
实时应用中的实际滤波器通过将信号延时一小段时间让它们能够“看到”未来的一小部分来近似地实现理想滤波器,这已为相移所证明。近似精度越高所需要的延时越长。
采样定理(Nyquist-Shannon sampling theorem)描述了如何使用一个完善的低通滤波器和奈奎斯特-香农插值公式从数字信号采样重建连续信号。实际的数模转换器都是使用近似滤波器。
文章由:UU型滤波器 工字电感http://www.zslcdz.com整理提供


